
JOURNAL OF COMPUTATIONAL PHYSICS 9, 1@25 (1972) 

Evolution of a Stationary Disk of Stars 

FRANK HOHL 

NASA Langley Research Center, Hampton, Virginia 23365 

Received April 8, 1971 

An improved potential solver for calculating the gravitational potential of isolated 
disk galaxies is presented. The potential solver is used to investigate the evolution of 
initially stationary axisymmetric disks of stars for various values of the initial velocity 
dispersion. 

1. INTRODUCTION 

Two computer models for “collisionless” self-gravitating thin disk galaxies have 
recently been described by Miller and Prendergast [l] and by Hohl and Hackney 
[2]. To obtain the gravitational potential or force in these models, an IZ x IZ array 
of cells is superposed over the galactic disk. The mass density in each of the n x n 
cells is used to obtain the gravitational force by means of convolution methods 
making use of fast Fourier transforms [3]. Because of the periodic nature of 
finite Fourier transforms, Miller et al. [1,4] used a doubly periodic model for their 
force calculations. Hohl and Hackney [2] modified the Fourier transform method 
to obtain the potential for isolated disk galaxies. However, to obtain the gravita- 
tional potential for an isolated disk galaxy covering an n x n array of cells, the 
Fourier transforms were performed on an 2n x 2n array of cells, thereby in- 
creasing the required storage for the potential calculation by a factor of four. In the 
present paper a modified potential solver is presented which allows the potential 
for isolated disk galaxies to be obtained with only a twofold increase in storage. 

In published work [l, 2, 4-61 on the simulation of disk galaxies, the initial 
conditions chosen were not solutions of the time-independent collisionless Boltzman 
equation. Even though some of the initial conditions [5, 61 were for initially 
balanced disks, these initial conditions did not correspond to stationary disks. One 
exception to this is the “cold” balanced disk which, however, is violently unstable. 
In the present paper, the evolution of initially stationary disks for various tem- 
peratures is investigated. With the exception of the modified potential solver the 
model used for the calculations is the same as that presented previously [2]. 
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II. POTENTIAL CALCULATION 

The scaled gravitational potential at the center of cell (x, JJ) is defined by the 
double summation over the two-dimensional array of cells 

where 
Hi j = (i2 +j2)-li2 for i + j # 0, 

Ho,, = 1, 

and pi,j is the mass density in cell (i,j). The double summation is evaluated by the 
convolution method using fast Fourier transforms [2]. That is, the Fourier trans- 
form of the potential equals the product of the Fourier transforms of p and H 

The gravitational potential +Z,y is obtained by taking the inverse Fourier trans- 
form of (2). Rather than using a complex Fourier series, we have chosen to use a 
real expansion. For example, the Fourier transform of the density pl,r is given by 

N-l N-1 

Pk.l = c c ( 1 ( > c x c y pr*&, cos(?i-kx/n) cos(dy/n) 0 d k,l< n 
t/=0 s=o 

N-l N-l 

= z. Ix0 c(x)tLw cos(rkx/n) sin[r(Z - n) y/n] 0 < k < n 
nclcN 

N-l N-l 

sin[n(k - n) x/n] cos(dy/n) n -C k < N 
O<l<n 

where 

N-l N-l 

= ,Fs Ll 
pr,y sin[n(k - n) x/n] sin[rr(l - n) y/n], n < k, I -C N (3) 

c(x) = l/G if x = 0 or x = n, 
c(x) = 1, otherwise, 

n defines the n x n active array and N = 2n defines the larger array over which 
the Fourier transform must be taken so that the potential for an isolated disk 
galaxy is obtained. Note that the density may be nonzero only in the smaller n x n 
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array. Because of the symmetry of H,,, , the Fourier transform tik,, can be ob- 
tained by a finite cosine transform 

I&, = i i c”(x) 3(y) H,,, cos(37kx/n) cos(dy/n), 0 < k, 1 d n, (4) 
v=o x=0 

and 

~k+n.z = ak.z+n = ~k+?l.z+n = fik,l - 

The next step in obtaining the potential is to multiply pKsL by ah,r to obtain 

$k,Z = Pk,Zii,,Z ’ (5) 

The gravitational potential for an isolated galaxy correctly defined over the n x n 
array is obtained by the Fourier synthesis 

&,Y = & [ f 1 f &Z cos (c kx) + y qk,z sin (c (k - n) x)1 
1=0 k=O k=n+l 

x cos (: ly) 

x sin (f (I - n) y)] . (6) 

Table I gives a Fortran listing of the computer program actually used to obtain 
the potential by use of an N x n array of cells. The variable 12A defines the size 
of the rectangular array used for the potential calculation. When the subroutine 
GETPHI is called, RHO(1, J) contains the mass density and GETPHI places the 
values of the corresponding gravitational potential in RHO(1, J). The subroutine 
FTRANS (1,12B) has been written by R. Hackney [7] and it performs a finite 
Fourier analysis or synthesis on the common input array Z and places the result 
in the common output array Y. The subroutine performs a cosine analysis for 
I = 2, a periodic analysis for I = 3, and a periodic synthesis for I = 4. The 
subroutine GETSET (I, 12B) initializes FTRANS and is called every time the 
arguments of FTRANS (I, 12B) are changed. The Fourier transform H,,, is 
calculated on an (n + 1) x (n + 1) array only the first time that the subroutine is 
called and is kept in storage for subsequent use. 

We next obtain the Fourier transform of pr,r in the x-direction on the N x n 
array, that is, for 0 < x < N - 1 and 0 < y < n. Since pz,V is nonzero only over 
the n x n array, the components of the Fourier transform of ps.V in the x-direction 
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TABLE I 
Subroutine for Calculating The Gravitational Potential 

SUBROUTINE GETPHI 
COMMON 2(257),Y(257),RHO(256,128),12A, 

ITEST 
DIMENSION H(129,129) 
IF(ITEST.EQ.0) GO TO 10 
ITEST=O 
12B =12A-1 
N=2**12A 
NO2 =N/2 
N21 =NO2+1 
RNI=l./(N*N) 
DO 1 J=l, N21 
DO 1 1=1, N21 
IF(I.EQ.l.AND.J.EQ.1) GO TO 1 
H(I,J)=RNI/SQRT((I-I.)*(I-l.)+(J-l.)*(J-1.)) 

1 CONTINUE 
H(l,l)=RNI 
CALL GETSET(2,12B) 
DO 2 J=l,N21 
DO 3 I-l,N21 

3 Z(I)=H(I, J) 
CALL FTRANS(2,12B) 
DO 4 1=1, N21 

4 HtI,J)=W 
2 CONTINUE 

DO 5 I= l,N21 
DO 6 J=l,N21 

6 Z(J)==H(I,J) 
CALL FTRANS(2,IZB) 
DO 7 J=I,N21 

7 H(I,J)=Y(J) 
5 CONTINUE 

10 CONTINUE 
CALL GETSET(3,IZA) 
DO 11 J=l,NO2 
DO 8 I=l,N 

8 Z(1) =RHO(I,J) 

CALL FTRANS(3,12A) 
D09I=l,N 

9 RHO(I,J)==Y(I) 
11 CONTINUE 

DO 12 I=l,N 
DO 13 J==l, NO2 
Z(J) =RHO(I,J) 

13 Z(J+NO2)=0. 
CALL GETSET(3,12A) 
CALL FTRANS(3,12A) 
IF(I.GT.NZl) GO TO 14 
DO 15 J=2,N02 
Z(J) =YQ*H(J,J) 

15 Z(J+N02)=Y(J+N02)*H(I,J) 
Z(l)=Y(l)*H(I,l) 
Z(N21)=Y(N21)*H(I,N21) 
GO TO 16 

14 DO 17 J=2,NO2 
Z(J)=Y(J)+H(I-N02,J) 

17 Z(J+N02)=Y(J+N02)*H(I-N02, 
Z(l)=Y(l)*H(I-N02,l) 
Z(N21)=Y(N21)*H(I-NO2,N21) 

16 CONTINUE 
CALL GETSET(4,12A) 
CALL FTRANS(4,12A) 
DO 18 J=l, NO2 

18 RHO(I,J)=Y(J) 
12 CONTINUE 

DO 19 J=l,N02 
DO 20 I=l,N 

20 Z(I)=RHO(I,J) 
CALL FTRANS(4,12A) 
DO 21 1=1, N21 

21 RHO(I,J)=Y(I) 
19 CONTINUE 

RETURN 
END 

J) 

will be zero for n < y < N. Therefore, by use of the one-dimensional arrays Y 
and Z we can perform the Fourier transform in the y direction, multiply the result 
by %., 3 and take the inverse Fourier transform in the y-direction. The result is 
placed in the N x n, RHO(1, J) array for 0 < y < n - 1 and 0 < x < N - 1 
with the values for n -=c y c N discarded. The final step is to perform the inverse 
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Fourier transform in the x-direction for 0 < y < n - 1. This procedure gives 
the correct gravitational potential for an isolated disk galaxy over the rz x n array. 

Table II gives the measured time for calculating the gravitational potential 
with the program listed in Table I. Also shown are the times required for the 
previous potential solver which required a larger N x N array. A listing of that 
program is given elsewhere [6]. 

TABLE II 
Computer Time Required to Obtain The Gravitational Potential 

Active 
nXn 

mesh 

CDC 6600 CPU Seconds 

Present potential solver Previous potential solver 
using 2(n x n) storage using 4(n x n) storage 

&calculated A given E;i calculated ii given 

16 x 16 0.164 0.126 0.182 0.144 
32 x 32 .618 .476 .660 .526 
64 x 64 2.440 1.892 2.626 2.086 

128 x 128 10.000 1.740 10.794 8.530 

III. SELF-CONSISTENT STATIONARY DISKS 

A time-independent, axisymmetric self-consistent disk of stars is described by 
the collisionless Boltzmann equation 

where v, and vg are the radial and azimuthal velocity components andf(r, v, , ve) 
is the distribution function such that 

dm = f (r, v, , ve) dv, due rdrdb’ (8) 

corresponds to the mass in a surface element rdrde. The gravitational field K, 
equals a+/&, where the potential +(r, z) is obtained from the Poisson equation 

Vz$ = 4rGp(r) S(z), (9) 

where G is the gravitational constant and the density p(r) is given by 

Ar) = ss f(r, v, , ve> dv, due . (10) 
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According to Jean’s Theorem [8,9] any function of the form 

f(r, v, ,cJ = f(K J) (11) 

is a solution of Eq. (‘7) where the energy E and the angular momentum J are given 
by 

and 

respectively. 

E = :(ur2 + vu”) + $3 

J = rue , 

The uniformly rotating disk with a mass density variation given by 

p(r) = p(O) dl - r2/R2 (12) 

has been extensively used in numerical simulations of disk galaxies [6,2]. In 
Eq. (10) ~(0) is the central mass density and R is the radius of the disk. The gravita- 
tional potential inside the disk is [6] 

4(r) = frw02r2 - u$R2, (13) 

where w,, = rr dGp(O)/2R is the uniform angular velocity required to balance 
the cold (zero velocity dispersion) disk. Omitting the constant term in Eq. (13) we 
can write 

2E = wo2r2 + vT2 + vg2. (14) 

Consider now a distribution function of the form [lo] 

f(E, J) = C,(C, - 2E + 2o~J)-l/~, (15) 

where w is the constant angular velocity of the disk, constraint such that 
0 < w < w. . We need 

C2 - 2E + 2wJ > 0; 

thus, for r = R, v, = 0, and ve = Rw we obtain 

or 
C, - w,,~R~ - w2R2 + 2w2R2 = 0, 

C, = (wo2 - w”) R2. 

Substituting for E, J, and C, , we can write Eq. (16) as 

f@, J) = C,b~o~ - w”) R2 - 2E + 2wJ]-li2 

= Cl[(W02 - w2)(R2 - r2) - vT2 - (v. - P.w)~]-~/~. 

(16) 
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From Eq. (10) we find 

II(') = j j f (4 4 dv, duo 

= 27rRC, dm d/1 - r2/R2. 

Therefore, since p(r) = ~(0) 41 - r2/R2, we obtain 

and finally 

m 4 = f(r, vr 3 ve) 

l-40) [(oo2 - -FC 

= 27rR do$ - 03 
w2)(R2 - r2) - vT2 - (ve - ~cIJ)~]-~~~, (17) 

The distribution function (17) is a stationary solution of the Boltzmann Eq. (7) 
and has previously been obtained by Kalnajs [l 11. If w = w0 in Eq. (17) we have 
the cold, violently unstable disk which was previously investigated [2, 61. For 
w = 0 the disk is nonrotating and purely pressure supported. 

Toomre [12] has investigated the stability of a stellar disk by means of a local 
theory. He estimates that for a disk with a Gaussian velocity distribution, a 
velocity dispersion equal to, or greater than 

u r.min = 3.36 GCL/K (18) 

should be locally stabilizing for exponentially growing axisymmetric modes. In 
Eq. (18), K denotes the local value of the epicyclic frequency, which for the uni- 
formly rotating disk is 

K = 204. 

Toomre’s evaluation of uV,min is not easily extended to the present non-Gaussian 
velocity distribution given by Eq. (17). Also, overstabilities may be present since 
the density of stars in phase space is not a decreasing function of epicyclic amplitude 
[13]. Nevertheless, Eq. (18) should represent the local criterion for squelching 
axisymmetric exponentially growing modes [14]. We therefore consider a para- 
meter Q which is the ratio of the rms velocity u,. of the disk to 07,min as given by 
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Eq. (18). We would expect Q = 1 to be a lower bound on the rms velocities 
needed for stability. Using f(r, ZI, , UJ as given by Eq. (17), we obtain 

1 ue2 + UT2 = 20,2 = - 
v(r) ss h2 + (Q - rW>2)f(r, 0, , Q> dv, & 

=- :c,De- co2)(R2 - r2), 

or 
UT = [(wo2 - w2)(R2 - r2)/3]l/“. 

For the uniformly rotating disk, Eq. (18) takes the form 

(19) 

so that 

The variation of Q as a function of w for the uniformly rotating disk is shown in 
Fig. 1. The value of Q varies from zero, for o = w,, , to 1.69 for o = 0. Q is equal 
to one for w M 0.8 o,, . 

2.0 
l- 

B l.O- 

0.5 - 

0 0.2 0.4 0.6 0.8 1.0 

FIG. 1. Variation of Q = u&,,,,,~, with w for the uniformly rotating disk of stars. 

Iv. &.SULTS 

The results presented in this section were obtained with an 128 x 128 active 
mesh for the potential calculations. The disks consisted of 100 000 stars and there 

581/g/1-2 
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were 200 time steps per rotation. An estimate of the binary collision time for the 
model has been made previously [6]. The ratio of the collision time T, to the rota- 
tional period rT = 27rjw,, was estimated to be 

where N is the number of stars in the system and Dmi,/R is the ratio of the grid 
size used in the calculations to the radius of the disk. For the present calculations 
we obtain 

T,/T, g 160, 

so that the system can be considered collisionless for about 160 rotations. 
The case of a cold disk w = w0 was previously investigated [2] and, as expected, 

the disk was found to be violently unstable. Presently we have investigated disks 
with w = 0.8~0, , w = 0.6~0,) o = 0.40~~ and o = 0 corresponding to initial 
values of Q given by Q = 1.01, Q = 1.35, Q = 1.55, and Q = 1.69, respectively, 
where Q is given by Eq. (20). We should emphasize that the model galaxies represen- 
ted by Eq. (17) do not represent a mass or velocity distribution that one would 
expect to find in nature. For example, for the maximum velocity at a given radius 

V - d/(wo2 - mm - co2)(R2 - r”) , 

f (r, 0, , v,) as given by Eq. (17) is actually singular, and f (r, v, , v,J increases with 
increasing v, or zig . However, presently there are no really “good” stationary 
solutions of the collisionless Boltzmann equation available for disk galaxies. Some 
interesting solutions for self-gravitating disk-like stellar systems are discussed by 
Miyamoto [I 51. 

The evolution of four disks of stars corresponding to Eq. (17) with (a) w = 0.8w,, 
(b) w = 0.6~0, , (c) w = 0.4w, , and o = 0 is presented in Fig. 2. Each of the 
100 000 stars in the simulation represents 0.84 x lo6 solar masses so that the total 
mass of the disk galaxy is 0.84 x IOllM,, (solar masses). The rectangular border 
enclosing the disks represents the active 128 x 128 array of cells used in the calcula- 
tions. The initial radius of the disks is 16 kpc (kiloparsec). Since the disks become 
progressively more stable as the initial velocity dispersion is increased (or w is 
decreased), the evolution of the more stable systems is investigated for longer 
times. The times shown in Fig. 2 and in all subsequent figures are in units of the 
rotational period of the cold (zero velocity dispersion) disk TV = ~z-/uJ,, . Figure 2(a) 
shows that, for Q = 1 (or w = 0.80,), the system is unstable and within two 
rotations it has formed a bar-shaped structure. After three rotations this structure 
remains essentially unchanged. It should be noted that all small-scale instabilities 
which occurred in the cold disk [2] have been stabilized. Only the large-scale 
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(b) 

(d) a 0 a 4ilB 
MI-1 , 

t=o t = 3.0 t = 6.0 t = 9.0 

FIG. 2. Evolution of an initially uniformly rotating and stationary disk galaxy for four values 
of the angular velocity given by (a) o = 0.8~~ , (b) w = 0.6~~ , (c) w = 0.4w, , and (d) w = 0, 
where w0 is the angular velocity of the cold (zero velocity dispersion) disk. 

“bar making” instability is present. A similar result is shown in Fig. 2(b) for 
Q = 1.35. However, the bar structure is now much less pronounced. For Q = 1.55, 
the system is essentially stable. Some of the stars near the edge of the disk tend to 
escape to larger radii. This is to be expected since the distribution function 
f(r, o)T ? vs) is singular at the edge and star orbits tend to be unstable there. Similar 
results are obtained for the nonrotating disk shown in Figure 2(d). Figure 2 
indicates that the disk becomes stable for values of Q somewhere between 1.35 and 
1.55 or for values of w between 0.4~0, and 0.6~0, . These results are in agreement 
with a normal mode analysis performed by Kalnajs (11) who finds that the simple 
mode corresponding to the bar disturbance becomes unstable for w 2 0.508. 

Four individual star orbits for each of the four disks of stars are given in Fig. 3. 
Figures 3(a) and 3(b) indicate that the orbits are quite perturbed because of the 
changing structure of the disk. The orbits in Figs. 2(c) and 2(d) are nearer to 
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FIG. 3. Orbits of four individual and randomly chosen stars corresponding to the four initial 
conditions shown in Fig. 2. The time during which the orbits are plotted corresponds to the times 
shown in Fig. 2. 

unperturbed orbits and indicate that only small fluctuations occur as the disks 
evolve. 

The evolution of the distribution of the radial velocities of the stars as a function 
of star radius is shown in Fig. 4. As can be seen from Fig. 4(a) and (b), the radial 
velocities of the stars increase rapidly as the system evolves. Also, a large number 
of stars greatly increase their radii. For w = 0.4~0, and w = 0, the results in 
Fig. 4(c) and (d) show that there is little increase in the radial velocities, which, of 
course, were already large at t = 0. Only a few stars increase their radii beyond the 
initial disk radius, especially for the disk in Fig. 4(d). Nevertheless the distribution 
of radial velocities at t = 3 in Fig. 4(d) shows that quite subtle changes take place 
in the velocity distribution near the edge of the disk. However, these changes do 
not appear to affect the structure of the disk appreciably. Similar results are shown 
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FIG. 4. Evolution of the radial velocity components of the stars plotted as a function of 
radius for the four disks shown in Fig. 2. 

in Fig. 5 for the azimuthal velocity components of the stars. The rectangular 
borders enclosing the velocity distributions in Figs. 4 and 5 extend from 
-350 km/set to 350 km/set and from 0 to 30 kpc. 

In order to obtain more quantitative information than can be obtained from 
Figs. 2 to 5, the disk is divided into a number of concentric rings, each of l/2 kpc 
width. The radial dependence of various parameters averaged azimuthally over 
each ring is then obtained. Figure 6 shows the evolution of the rms radial velocity 
dispersion obtained in the above manner for the four disks under investigation. 
Figure 6(a) shows rather large changes in the rms radial velocities of the disk, with 
a pronounced increase in the velocity dispersion as the disk evolves. Similar but 
less pronounced changes occur for the disk in Fig. 6(b) and (c). The central rms 
radial velocities of the stars actually decrease slightly for the nonrotating disk 
shown in Fig. 6(d). A better indication of how hot a disk of stars becomes can be 
obtained from the evolution of Q = or/or,mrn. Figure 7 shows the evolution of 
the azimuthally averaged Q for the four disks. The results in Fig. 7(a) indicate that 
the disk becomes rather hot, with values of Q in the outer parts of the disk near 
six. For the disk with an initial angular velocity of w = 0.6~0, , the value of Q 



FIG. 5. Evolution of the azimuthal velocity components of the stars plotted as a function of 
.adius for the four disks shown in Fig. 2. 

-~--. .- 
0 5 10 15 20 25 0 5 10 15 2025 0 5 10 15 20 2’5 0 5 10 15 20 25 

I‘, kw r’, kPc r, kw r,kpc 

FIG. 6. Evolution of the rms radial velocities of the stars as a function of radius for the four 
lisks shown in Fig. 2. 
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FIG. 7. Evolution of Q = o,/D~,,~~ for the four disks shown in Fig. 2. 

2.1 x 108 

r, kw r. kpc r. kpc r,kF 

FIG. 8. Evolution of the azimuthally average density for the four disks shown in Fig. 2, 
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increases from 1.35 to about 2. Smaller increases occur for the disk in Fig. 7(c). 
Finally, the value of Q in Fig. 7(d) for the nonrotating disk remains nearly constant 
at Q = 1.69. 

The evolution of the azimuthally averaged density for the four disks is presented 
in Fig. 8. For the most unstable disk shown in Fig. 8(a), the final central density 
increases to a high value given by an approximately exponential density variation. 
Similar results were previously obtained for other violently unstable disk galaxies 
[6]. In Fig. 8(b) the central density oscillates between 1.4 x 10s and 
2.1 x 108Mo/kpc2, reaching a final value of about 1.7 x 10*Mo/kpc2 after 4.5 
rotations. The changes in the density for the disk shown in Fig. 8(c) were the least 
pronounced of the four disks. For the nonrotating disk in Fig. 8(d) the central 
density appears to be oscillating near the value of 1.4 x IO9 M0/kpc2. When the 
kinetic energy of the disks is plotted as a function of time, it is found that the 
kinetic energy initially oscillates nearly sinusoidally about the equilibrium value. 
The initial amplitude of the oscillations is about 5% of the equilibrium value and 
the period of the oscillations in all four cases is near the rotational period of the 
cold balanced disk. For disks (a) and (b), the oscillations are strongly damped 
after the first two oscillations. For disk (c), the oscillations are more slowly damped 
whereas for disk (d) the oscillations in the kinetic energy show no damping during 
the nine rotations investigated 

SUMMARY 

The evolution of a disk galaxy which is a stationary solution of the collisionless 
Boltzmann equation is investigated for four values of the initial rms velocity 
dispersion or initial rotational velocity of the disk. For rotational velocities of 
w = 0.8~0, and w = 0.6~0, (oO is the rotational velocity of the cold, zero velocity 
dispersion disk) corresponding to Q = 1 and 1.35, respectively, the disk formed a 
bar-like structure. For w = 0.4~0, and w = 0 (or Q = 1.55 and Q = 1.69), the 
disk was essentially stable; however, for these two cases the disks sustained what 
appear to be natural oscillations or pulsations with a period near the rotational 
period of the cold balanced disk. The pulsations were especially pronounced for 
the nonrotating disk where they did not show a decrease in amplitude for the nine 
rotations investigated, 
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